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Abstract

A technique, which is based on the separation of variables with subsequent
either complete or partial summation of the resulting series, is used to obtain a
number of computer-friendly representations of Green’s functions. Boundary-
value problems, stated for the Laplace equation are considered in regions on a
spherical surface. An extension of the technique to other surfaces of revolution
is discussed.

1. Introduction

The Green’s function approach is widely used in nowadays for the
solution of applied boundary-value problems for partial differential
equations [2, 9, 10]. Green’s function could be especially important for
developing the boundary-element method numerical techniques [3-5]. In

this study, we aim at the extension of the technique, proposed in [8], to a
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number of problems applicable in those areas of engineering and science
that deal with thin shells.

We will start with the construction of the Green’s function of a
boundary-value problem stated for the Laplace equation in a region Q on

a spherical surface of radius a. That is, the Poisson equation

1 0 ( . oulo, 9)) 1 %u(o, 0)
5 A | SO + = _f((p7 e), o®, 0 e Q, (1)
a® 09 oo a’sing  00°

written in geographical coordinates is subject to the boundary conditions
Bi[u(e, 61)] = 0, Bslu(e, 62)] = 0; 2
and
Bs[u(er, 0)] = 0, By[u(es, 0)] =0, 3
where B;, i = 1,_4, are the boundary condition operators.

If G(o, 6; v, T) represents the Green’s function of the homogeneous

boundary-value problem corresponding to (1)-(3), then the solution to the

problem in (1)-(3) itself can be expressed as the volume integral
u(p, 0) = IQG((P, 0; v, T)f (¥, T)dy Q. (4)

Assume that the boundary-value problem in (1)-(3) allows separation

of variables. Implying that B; and B, represent a combination of
Dirichlet and Neumann operators, we expand the solution u(p, 0) of the
original problem and the right-hand side function f(p, 8) of the
governing equation as

o0

w9, 6) = D u,(p)sin v6, ®)

n=1

and
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fl@, 0) = D fu(9) sin vo, ©)
n=1

where the factor v is directly proportional to the index of summation n.

Substituting the above trigonometric representations into the original

boundary-value problem, we obtain the set

dun(w)j - v

1 d(.
yd—@(51n“’ “ un(@) = ~ful0), n=1,23, ... (7

sin @
Bg[un(91)] = 0, Bylu,(02)] =0, ©)
of boundary-value problems for ordinary differential equations.

Keeping in mind the application of the method of variation of
parameters to the boundary-value problems in (7)-(8), we need two
linearly independent particular solutions for the homogeneous equation

corresponding to (7). Obtaining those, we change the independent

® = In (tan (g))

which reduces the problem in (7)-(8) to

variable ¢ as

2
d;‘T"é“)) ~ v, () = 0, ©)
Bs[u,(01)] = 0, Bylu,(wg)] = 0. (10)

This allows, within the scope of the method of variation of parameters,

the general solution for (9) in the form
Uup(®) = Cr(w)e” + Ca(w)e™,

or going back to the variable ¢, we have the solution u,(®) in form

un(9) = Cy(o)tan”( ]+ Cyfo)tan™(F ). an
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Following the procedure of the method, we arrive at the system of

linear algebraic equations
Ci(¢)tan" (%) + Cy(p)tan™ (g) =0,
Cio tan” (2) - Cy(ol tan~(2) = a2f(g)sin(o),

in Ci(p) and Cj(¢p), whose solution can be written in the form

N ()
Cilo) = 2vtan” (o /2) ’
and
Ch(o) = fn(®)

2utan(p/2)

where }?n (o) = a? fn(0) sin o.

This gives rise to

Cilo) = [ F v+ D,

91 2vtan(y / 2)

and

Cy(g) = j(p : f@)dv + Ds.

o1 2vtan~"(y / 2)

Upon substitution of these into (11), we obtain

u (o) = —[° @ /2) F iy b tan?
o) = @)y + Dyt /2

¢ tan"(p/2) 7 "
" I¢1 2v tan” (¢ / 2) fnw)dv + Dy tan (e /2).

which transforms into

u _1(° tan”(p/2) tan"(¢/2)|7
n((P) u @1(tan”((p/2) tan“(w / 2)an(W)dw (12)
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+ Dy tan" (9 / 2) + Dy tan™" (o / 2).

Satisfying the boundary conditions in (8), we will be able to express

(12) in a form of a simple integral

%m=(f&mwﬁww, (13)
1

where the kernel g,(p, ¥) is expressed in two pieces. In considering
particular problems in sections that follow, we discuss this last issue in

detail.

To proceed further with our approach, we express the coefficients

fn®) of (6) by using the Euler-Fourier formula

2
0y — 61

0
fa(9) = jjmwmmwa
1

and substitute u,,(¢) into (5). This yields
u((P9 e) = J.QG((P’ 0; v, T)f(w’ T)dw,TQ’

where G(¢, 0; ¥, T) represents the Green’s function of the homogeneous

boundary-value problem corresponding to (1)-(3) [6] that appears in the

form

2

Glo, 0; », T) = 5 Zgn((p, ¥)sin 10 sin vT. (14)
e n=1

0o

In the following sections, we consider a number of particular problem

settings.
2. Dirichlet Problem on a Spherical Triangle

Consider the spherical triangle Q= {9, 8|0 <¢ <p;0<6 <y},
where 0 <pB <mn and 0 <y < 2n. For Dirichlet boundary conditions,

with B;, 1 = 1,_4 in (2)-(3) being the identity operators, we have

1’
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Bi[u(e, 61)] = u(e, 0) = 0, Bylu(e, 03)] = ule, v) =0, (15)
B3[u((\019 e)] = |u(0’ e)l < @, B4[u((P2’ 9)] = U(B, 9) = 0. (16)

To satisfy the boundary conditions in (15), the parameter v in the

Fourier series expansions of (5)-(6) must be v = nn/y. By satisfying the
boundary conditions in (16), we determine the constants D; and Dy in

(12). First, the boundedness condition |u(0, 0)| < o, provides us with
Dy = 0. a7
The second condition results into

1 ﬁ(tan"(w/m _tan"(B/2)
2vloltan'(p/2) tan'(y/2)

an(w)dw + Dy tan"(B/2) = 0.

Introducing the shorthand notations
(e) = tan™/(5/ 2),
and
B = tan™"(§/2),

the above expression can be solved for D;

1 (1 ( B cpn(w)]~
D= —|—-—* dy. 18
' 2v)o pr (cpn(w) B" f#)y a9

Finally, substituting expressions from (17) and (18) into (12), one
obtains

e L [P0 ( B0
(0= 3 [ 20 B 07

. B@"w)[ B" ")

1 £, (®)dv,
2vl, B " (p) B an(l/?) 4

which could be interpreted as (13), where



RECENT ADVANCES IN THE CONSTRUCTION ... 43

m"(w)(@”(so) _ B ) if0<y<eo,

_ 1) B B"  0"(e)
gn(‘P’ w) -~ o
2v | 0"(e) (cb”(w) _ B j :
n n o)) if o<y <B.

Now, we make use of formula (14) to find the Green’s function for
boundary-value problem corresponding to that in (1), (15), and (16).
Breaking product of sines into the difference of cosines and using the

standard summation formula [1, 7]

X n
Z%cos(na) = —ln(\/l —2pcosa + p2j,

n=1

the Green’s function in (14) could be expressed as

1 (34 — 2B%® (¢)® (v) cos(k (0, 7)) + @2(([))(1)2(1/))J
4

G(p, 9; 9, 1) = ——1n
(0607 B* - 2B® ()@ (p) cos(n (6, 7)) + ®*(9)d7(p)

. 4th (Cbz(w) — 20 ()P (v) cos(k.(6, 7)) + CDz(w)j, (19)
T ®%(p) - 20(p)@(¥)cos(n (6, 7))+ ©(»)

where we again use, for shorthand,
®(E) = tan™*(£/2), B = tan™"(B/2);

and
k(0, T) = %(e +1), n®, 1) = %(e ~ 7).

The Green’s function in (19) possesses the logarithmic singularity

when ¢ > yp and 6 —» 1 and represents the solution of the boundary-
value problem in (1), (15), and (16), if the right-hand side function f(¢p, 0)
is understood as the Dirack delta-function f(o, 0) = 8(¢p — v, 6 — 7).
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3. Other Boundary-Value Problems
Posed on Sphere

Varying the boundary condition operators in (2)-(3) and the domain

for the variables ¢ and 0, and using the technique described in the

previous section, we can obtain a number of Green’s functions for the

Laplace equation posed on sphere.

Before proceeding further, for convenience, we make some simplifying
assumptions. First, a 4-letter scheme will be used to specify the boundary
conditions in a short way. Each letter corresponds to a boundary
condition operator in (2)-(3). “D” relates to the Dirichlet condition, while
“N” means the Neumann condition. “S” means the boundary condition at
a singular point. For example, the case of boundary conditions, considered
in the previous section, could be specified as DDSD. In addition, we

introduce two logarithmic functions

- 2
Hp, o p) = - L n[1=Zroosasa®)
4 1 - 2x cos P + x>

and

1+ 2xcosa +x2 —Lln 1+2xcos[3+x2
2 4r '

1
Hpy(x, o, B) = +4—nln(

1-2xcosa + x 1—2xcosB+x2

Using such a specification scheme, we present, in Tables 1 and 2, a
list of Green’s functions for a number of well-posed boundary conditions.
For cases, where the series in (14) cannot be totally summed up, we will

split the logarithmic singularity, and leave the regular components R]i\],

expressed as uniformly convergent series. These are presented for the

corresponding problems later.
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Table 1. Green’s functions for boundary-value problems posed on sphere

Bound
# our? ‘ary Q Green’s function
conditions
1| DDSD (0, 0/0<0<B0<0<y} HD[G)(‘P)‘D(‘”),mnj—HD(q)(“")m,n)
B2 D (y)
2| DDSN {p8lo<o<pos<o<y | _pgp d>(<p)d>(w),&n]_H (m(w) N’n)
B2 D (p)
,0l0<o<p0<0< O@EOPE) & m|_ (@) r n
3| DNSD l,0[0<0p<p 1} HN[ PR R IO
L Ol0<e<P0<O< _ Q@EPE) & m|_ D@ & M
4| DNSN lo.0]0<o<p v} HN[ FEERELY HN\o@ 2 3
[0
5 DDSS {9.0|0<p<m0<O<y} —HD(%H&HJ
D
6 DNSS {0.8|0<p<m 00y} fHN((DL‘;,’;,n,n)
2
D D D (p)A
HD( @ow) nj_HD{ @42 ”j
B @ (p)B
7 DDDD {0, 0]a<p<B0<6<y}

@ (e) AZ 7
- (g )+ HD[@(cp)@(w e “j +iN

. HD(@ («2; © . nJ . HD[@ @42 n]

o@B?
8 | DDDN {o.8la<p<pO<O<y)

() A% 8
_HD((D(W) , K, n)+HD(W’ K, n]-%—RN

HD[q»(«o)m(w) . n] . HD[@(@A; . n]
@ (p)B
DDND {p, 0|0 <@<P;0<0<y}

@ (o) A% 9
,HD(G)(W) , K, n)—HD[W,K, n]JrRN
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Table 2. Green’s functions for boundary-value problems posed on sphere

(continuation)
# Boundary Green’s function
conditions
() D (p @ (9)A”
(RO ) 0087
B @ (v)B
10 DDNN

{g,0]la<o<B0<0<y)

AZ
) HD[—m @om) ™ “J *

11 DNDD {0,0|a <@<B 0<6<y}
D(p) K A2 K
‘HN[ 02 3]””[ D) 2 %J*R}Vl
(o) D K O (p)A% «
_HN[ (‘22 - 2 %JJrHN[ m(((;;BZ 5%]
12 DNDN {o,0|la <@<B 0<6<y}
D(p) K A2 K
—HN[ W(;) 2 %]JrHN[ D)D) 2 %]JrRl?
()0 ¥) o ()42 «
A el
13 DNND {0,0|la <@<B 0<6<y}
D(p) K A2 K
‘HN[ o6 2 %]‘HN[\/WG’%]*R}VS
D (0)0(¥) & o (p)A2 «
o
14 DNNN {o,0|la <@<B 0<6<y}
o(p) & A? K
({35 4] - ey 33
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The regular terms R]iv, i = 7,14 for Green’s functions, which cannot
be totally summed up are shown below:

L N AZn(q),?n((p)_BZn)((DZn(w)_A2n)
21 B2nch((P)ch(w)(B2n _A2n)

n=1

Ry = ( cos nn(B, T) — cos nk(6, T)),

X = — (cos nn(0, 1) — cos nk(6, 1)),

N 2n (g 2n 2n 2n 2n
s _ 1 AT () + BT) (@7 (p) - A™")
R 21 nz B2nch((P)ch(w) (B2n A2n)

N 2n 2n 2n 2n 2n
o _ 1 ShAT(BY -0V (@) (@MW) AT o
RN QTC; B2nch((P)ch(w)(B2n+A2n) (COS T](e, ) cos (9, ))’
N 2n 2n 2n 2n 2n
R}\(f) ;—EZA (® ((p B7) (@™ (@) + A )(cos (0, T) — cos nk(6, 7)),

BZn(Dn (w) (BQn _ A2n)

n=1

N
rU -1 A"(®"(9) - B")(®"(v) - A") cos — (6, T)—COS—H(O T)
Vo e e - an (2 )

N
R}? - L AT(@7(o) + B)(@%(p) - A7) cos—n(0, T —cos—m 0, T
N 2“; B"0" ()0 (p) (B + A") ( 210" ( ))
N
RY =L An(Bn _ n((p))((bn(w)JrAn) cos—n(O, T —cos—r@ 0, T
! 2%2 B"\0" (0)0" (v) (B" + A") ( 3@ | )j
and

N
Rl _ 1 A"(07 (o) + B")(@"(v) + A”) cos —n(0, T)—COS—H(G T)
N Zn; an/q)n((\o)q)n(w) (Bn _An) ( j

4. 2n -Periodical Problems

Another type of boundary conditions for the problem in (1)-(3) to be
considered. It relates to the 2rn-periodicity for the coordinate 0, when in

(2) 69 = 0; + 2n. This implies that the boundary condition operators in

(2) are written as
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Bl[u((p’ 91 )] = u((p’ 91 ) - u((p’ 62) = Oa

and

oule, 6 ou(p, 6
Bylu(e, ;)] = ((ge 1) _ ((ge 2):0.

In this case, the full Fourier series expansion, for u(e, 0) and f(o, 0)

must be used

u(o, 0) = %uo (o) + Zu,(f)((p) cos nb + Zugf)((p) sin no,

n=1 n=1

and

[0, 0) = 5 folo)+ Y ) cos 0+ 3" [{)(g) sin no.
n=1 n=1

Following the technique described earlier, we express the Green’s

function in the form

1 o0
G(o, 6; 9, T) = EgO((‘D’ )+ Zggf)((p, ¥) cos no cos nt

n=1

+ Zgﬁf)(cp, y) sin n0 sin nr. (20)
n=1

The cases n =0 and n > 0 must be considered individually. The
derivation of the Fourier coefficients is indifferent to the type of the

series. That is

29, v) = 90, v) = g,(0,v), n=1,2,3, ... (21)

To derive go(o, ¥), we find the general solution ug(w) of the equation

in (9) for n = v = 0, which is

uo((u) = CI(D + C2,
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up(e) = C; In (tan (g)) + Cy.

Using the method of variation of parameter, one can find the general
solution of the corresponding non-homogeneous differential equation with
right-hand side function fy(¢) as

up(e) = - " In 22(((;)) a? sinvfy(¥)dy + Dy In ®y(¢) + Dy, (22)

P1

where
D(&) = tan(%).
Satisfying then the boundary conditions, the above solution reads as

(@) = [ " g0(o 2)o)ae

And the Green’s function, that we are looking for, could be written

down as

G(9, 0 v, 7) = 3 20(0, V) + Y 8 (0, ) cos (0 — 7). (23)

n=1

We skip detail of a tedious derivation procedure for particular
boundary-value problems, and just show the final expressions for their

Green’s functions.

For the spherical cap: Q={p,0|/0<¢<p;0<6<2n}, the

boundary conditions are imposed as
B3[u(0, 0)] = [u(0, 8)| < =,
and

B4 [U(B’ e)] = u(B7 e) = 0.
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The ultimate expression for Green’s function is found as

Glo. 6 9. 7) = Lln[ B (95 () = 200 () Do (#) cos (8 — 1) + ©F (v)) J
By — 2B3®(9) @ (¥) cos (6 — 7) + @G () DG (»)

47

where
_ Bj
By = tan (—2 .

For the spherical belt: Q = {p, 0] a < ¢ <B; 0 <0 < 2r}, with the

Dirichlet conditions
Bs[u(a, 0)] = u(a, 0) =0,

and
B4 [U(B, e)] = u(B7 e) = O’

the Green’s function appears as

cbo<<p)cbo<w),e_Tl_Hz{mo(wAé 0-

1
G((P’ e’ v, T):_gO((P’ w)+H2 { )
2 i By D (v)By
Dy (9) ) A3
-H ( O -1 |+H ,0—7|+Ry,
RCTIO) 1 @0 (9) @ (») N
where
Hy (x, o) = %ﬂln (1-2xcosa+x2),
By o (¥) :
2o v) — 1 lnq)o((p)l A if a<oe<uy,
O BT, Ao By Qo () .
ng lnmln A if ¢ <y <B,
N on x2n _ n2n 2n _ A2n
Ry - 2LZ“AO (‘21;0 T(L(P) Eo )(@2?1 ®) 2;40 )COSI’L(G—T),
Ted By"og(e)@g(@)(By" - Ag
and

Ay = 2.
0 tan(z)



RECENT ADVANCES IN THE CONSTRUCTION ...

51

For the spherical belt with the Dirichlet-Neumann -conditions

imposed as
Bs[u(a, 0)] = u(a, 0) = 0,
and

Blu(p. 0) = 80 o,

we arrive at

1 [} D, (v 10} AZ
G(o, 6; p, 7) = §§0((P, p) - HZn[%, 0 - TJ + HZE[—O((‘)) 0 ¢

0 ®((0)BE
~H, (CDO(‘P) e—Tj+H2 A + Ry
Do)’ " Do) Do (»)’ ’
where
Pole) , 1 4o :
g(@w)zl <I>0(w)+Bo Bo(0) * if a <o <y,
0 > 1 AO lf (p < w < B
By T @g(p)’ IR
and

N
Ry =3 AF" (25" (o) + BF") (95" (v) — AF"
2n B 0f(9) G (0)(BG" + AF"

n=1

cosn(0 — 1).

.

For the spherical belt with the Neumann-Dirichlet conditions

imposed as

ou(a, 0) 0
oo a

i

BS [u(a, e)] =

and
B4 [U(B’ e)] = u(B? e) =0,

the Green’s function reads as
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Po(9)Po¥) o j N HZ{‘DO“")A% oo J

0 @ (v)B§
Do (¢) j A2
CHy |20 gt Hy |20 91|+ Ry,
2"(%@ 7| Do 0) @0 ) N
where
D
In %ff’), if a<o<y,
gO((P’ 115) @ (W)
m=p=,  ife<p<p
and
N
N = b Z AFM(BF" - 08" (0)) (95" (v) + AF" cosn(0 - 7).
2n B (p)of ) (B + AF"

5. Concluding Remarks

Note that similarly to the developments used in this presentation,

computer-friendly forms of Green’s functions can be obtained for potential

problems set up on other surfaces of revolution. In particular, conical,

cylindrical, and toroidal surfaces can be considered.
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