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Abstract 

A technique, which is based on the separation of variables with subsequent 
either complete or partial summation of the resulting series, is used to obtain a 
number of computer-friendly representations of Green’s functions. Boundary-
value problems, stated for the Laplace equation are considered in regions on a 
spherical surface. An extension of the technique to other surfaces of revolution 
is discussed. 

1. Introduction 

The Green’s function approach is widely used in nowadays for the 
solution of applied boundary-value problems for partial differential 
equations [2, 9, 10]. Green’s function could be especially important for 
developing the boundary-element method numerical techniques [3-5]. In 
this study, we aim at the extension of the technique, proposed in [8], to a 
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number of problems applicable in those areas of engineering and science 
that deal with thin shells. 

We will start with the construction of the Green’s function of a 
boundary-value problem stated for the Laplace equation in a region Ω  on 
a spherical surface of radius a. That is, the Poisson equation 
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written in geographical coordinates is subject to the boundary conditions 

[ ( )] [ ( )] ;0,,0, 2211 =θϕ=θϕ uBuB   (2) 

and 

[ ( )] [ ( )] ,0,,0, 2413 =θϕ=θϕ uBuB   (3) 

where ,4,1, =iBi  are the boundary condition operators. 

If ( )τ,;, vG /θϕ  represents the Green’s function of the homogeneous 

boundary-value problem corresponding to (1)-(3), then the solution to the 
problem in (1)-(3) itself can be expressed as the volume integral 

( ) ( ) ( ) .,,;,, , Ω//θϕ=θϕ /
Ω∫ τττ vdvfvGu   (4) 

Assume that the boundary-value problem in (1)-(3) allows separation 
of variables. Implying that 1B  and 2B  represent a combination of 

Dirichlet and Neumann operators, we expand the solution ( )θϕ,u  of the 

original problem and the right-hand side function ( )θϕ,f  of the 

governing equation as 
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where the factor ν  is directly proportional to the index of summation n. 

Substituting the above trigonometric representations into the original 
boundary-value problem, we obtain the set 
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[ ( )] [ ( )] ,0,0 2413 =ϕ=ϕ nn uBuB  (8) 

of boundary-value problems for ordinary differential equations. 

Keeping in mind the application of the method of variation of 
parameters to the boundary-value problems in (7)-(8), we need two 
linearly independent particular solutions for the homogeneous equation 
corresponding to (7). Obtaining those, we change the independent 
variable ϕ  as 

,2tanln 













 ϕ=ω  

which reduces the problem in (7)-(8) to 
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[ ( )] [ ( )] .0,0 2413 =ω=ω nn uBuB   (10) 

This allows, within the scope of the method of variation of parameters, 
the general solution for (9) in the form 

( ) ( ) ( ) ,21
ω−ω ω+ω=ω νν eCeCun  

or going back to the variable ,ϕ  we have the solution ( )ωnu  in form 

( ) ( ) ( ) .2tan2tan 21 
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Following the procedure of the method, we arrive at the system of 
linear algebraic equations 
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in ( )ϕ′1C  and ( ),2 ϕ′C  whose solution can be written in the form 
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Upon substitution of these into (11), we obtain 
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( ) ( ).2tan2tan 21 ϕ+ϕ+ −νν DD  

Satisfying the boundary conditions in (8), we will be able to express 
(12) in a form of a simple integral 
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where the kernel ( )vgn /ϕ,  is expressed in two pieces. In considering 

particular problems in sections that follow, we discuss this last issue in 
detail. 

To proceed further with our approach, we express the coefficients 
( )vfn /  of (6) by using the Euler-Fourier formula 

( ) ( ) ,sin,2 2

112
ϑϑϑϕ

θ−θ
=ϕ ∫

θ

θ
dffn ν  

and substitute ( )ϕnu  into (5). This yields 

( ) ( ) ( ) ,,,;,, , Ω//θϕ=θϕ /
Ω∫ τττ vdvfvGu  

where ( )τ,;, vG /θϕ  represents the Green’s function of the homogeneous 

boundary-value problem corresponding to (1)-(3) [6] that appears in the 
form 
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In the following sections, we consider a number of particular problem 
settings. 

2. Dirichlet Problem on a Spherical Triangle 

Consider the spherical triangle { },0;0, γ≤θ≤β≤ϕ≤θϕ=Ω  

where π<β<0  and .20 π<γ<  For Dirichlet boundary conditions, 

with 4,1, =iBi  in (2)-(3) being the identity operators, we have 



VOLODYMYR BORODIN 42

[ ( )] ( ) [ ( )] ( ) ,0,,,00,, 2211 =γϕ≡θϕ=ϕ≡θϕ uuBuuB   (15) 

[ ( )] ( ) [ ( )] ( ) .0,,,,0, 2413 =θβ≡θϕ∞<θ≡θϕ uuBuuB   (16) 

To satisfy the boundary conditions in (15), the parameter ν  in the 
Fourier series expansions of (5)-(6) must be .γπ= nν  By satisfying the 

boundary conditions in (16), we determine the constants 1D  and 2D  in 

(12). First, the boundedness condition ( ) ,,0 ∞<θu  provides us with 

.02 =D   (17) 

The second condition results into 

( )
( )

( )
( )

( ) ( ) .02tan~
2tan
2tan

2tan
2tan

2
1

1
0

=β+//








/

β
−

β
/∫

β ν
ν

ν

ν

ν

ν
Dvdvf

v
v

n  

Introducing the shorthand notations 

( ) ( ),2tan ξ=ξΦ γπ  

and 

( ),2tan β= γπB  

the above expression can be solved for 1D  
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Finally, substituting expressions from (17) and (18) into (12), one 
obtains 
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which could be interpreted as (13), where 
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Now, we make use of formula (14) to find the Green’s function for 
boundary-value problem corresponding to that in (1), (15), and (16). 
Breaking product of sines into the difference of cosines and using the 
standard summation formula [1, 7] 
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the Green’s function in (14) could be expressed as 
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where we again use, for shorthand, 

( ) ( ) ( );2tan,2tan β=ξ=ξΦ γπγπ B  

and 

( ) ( ) ( ) ( ).,,, ττττκ −θ
γ
π=θη+θ

γ
π=θ  

The Green’s function in (19) possesses the logarithmic singularity 
when v/→ϕ  and τ→θ  and represents the solution of the boundary-

value problem in (1), (15), and (16), if the right-hand side function ( )θϕ,f  

is understood as the Dirack delta-function ( ) ( ).,, τ−θ/−ϕδ=θϕ vf  
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3. Other Boundary-Value Problems  
Posed on Sphere 

Varying the boundary condition operators in (2)-(3) and the domain 
for the variables ϕ  and ,θ  and using the technique described in the 

previous section, we can obtain a number of Green’s functions for the 
Laplace equation posed on sphere. 

Before proceeding further, for convenience, we make some simplifying 
assumptions. First, a 4-letter scheme will be used to specify the boundary 
conditions in a short way. Each letter corresponds to a boundary 
condition operator in (2)-(3). “D” relates to the Dirichlet condition, while 
“N” means the Neumann condition. “S” means the boundary condition at 
a singular point. For example, the case of boundary conditions, considered 
in the previous section, could be specified as DDSD. In addition, we 
introduce two logarithmic functions 
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Using such a specification scheme, we present, in Tables 1 and 2, a 
list of Green’s functions for a number of well-posed boundary conditions. 
For cases, where the series in (14) cannot be totally summed up, we will 

split the logarithmic singularity, and leave the regular components ,i
NR  

expressed as uniformly convergent series. These are presented for the 
corresponding problems later. 
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Table 1. Green’s functions for boundary-value problems posed on sphere 
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Ω  Green’s function 
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Table 2. Green’s functions for boundary-value problems posed on sphere 
(continuation) 

# Boundary 
conditions 

Ω  Green’s function 
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The regular terms 14,7, =iRiN  for Green’s functions, which cannot 

be totally summed up are shown below: 
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4. π2 -Periodical Problems 

Another type of boundary conditions for the problem in (1)-(3) to be 
considered. It relates to the  yperiodicit-2π  for the coordinate ,θ  when in 

(2) .212 π+θ=θ  This implies that the boundary condition operators in 

(2) are written as 
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[ ( )] ( ) ( ) ,0,,, 2111 =θϕ−θϕ≡θϕ uuuB  

and 
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In this case, the full Fourier series expansion, for ( )θϕ,u  and ( )θϕ,f  

must be used 
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Following the technique described earlier, we express the Green’s 
function in the form 
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The cases 0=n  and 0>n  must be considered individually. The 
derivation of the Fourier coefficients is indifferent to the type of the 
series. That is 
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To derive ( ),,0 vg /ϕ  we find the general solution ( )ω0u  of the equation 

in (9) for ,0== νn  which is 
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or 
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Using the method of variation of parameter, one can find the general 
solution of the corresponding non-homogeneous differential equation with 
right-hand side function ( )ϕ0f  as 
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Satisfying then the boundary conditions, the above solution reads as 
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And the Green’s function, that we are looking for, could be written 
down as 
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We skip detail of a tedious derivation procedure for particular 
boundary-value problems, and just show the final expressions for their 
Green’s functions. 

For the spherical cap: { },20;0, π≤θ≤β≤ϕ≤θϕ=Ω  the 

boundary conditions are imposed as 

( )[ ] ( ) ,,0,03 ∞<θ≡θ uuB  

and 

( )[ ] ( ) .0,,4 =θβ≡θβ uuB  



VOLODYMYR BORODIN 50

The ultimate expression for Green’s function is found as 
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For the spherical belt: { },20;, π≤θ≤β≤ϕ≤αθϕ=Ω  with the 
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the Green’s function appears as 
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For the spherical belt with the Dirichlet-Neumann conditions 
imposed as 

( )[ ] ( ) ,0,,3 =θα≡θα uuB  

and 

( )[ ] ( ) ,0,,4 =
ϕ∂
θβ∂

≡θβ
uuB  

we arrive at 
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For the spherical belt with the Neumann-Dirichlet conditions 
imposed as 

( )[ ] ( ) ,0,,3 =
ϕ∂
θα∂

=θα
uuB  

and 

( )[ ] ( ) ,0,,4 =θβ=θβ uuB  

the Green’s function reads as 
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5. Concluding Remarks 

Note that similarly to the developments used in this presentation, 
computer-friendly forms of Green’s functions can be obtained for potential 
problems set up on other surfaces of revolution. In particular, conical, 
cylindrical, and toroidal surfaces can be considered. 

References 

 [1] M. Abramovitz and I. Ttegun, Handbook of Mathematical Functions, 10th Edition, 
National Bureau of Standards, Washington D.C., 1972. 

 [2] G. Barton, Elements of Green’s Function and Propagation, Clarendon Press, Oxford, 
1989. 

 [3] P. K. Benerjee and R. Butterfield, Boundary Element Method in Engineering 
Science, McGraw-Hill, London, 1981. 

 [4] J. R. Berger, Boundary element analysis of anisotropic materials with special 
Green’s functions, Engineering Analysis with Boundary Elements 14(2) (1994),    
123-131. 

 [5] C. A. Brebbia, The Boundary Element Method for Engineers, Pentech Press / 
Halstead Press, London-New York, 1978. 



RECENT ADVANCES IN THE CONSTRUCTION … 53

 [6] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience,          
New York, 1953. 

 [7] I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Series, and Products,    
Academic Press, New York, 1980. 

 [8] Yu. A. Melnikov, Influence Functions and Matrices, Marcel Dekker, New York,  
1999. 

 [9] V. D. Sherement, Handbook of Green’s Functions and Matrices, WIT Press, 
Southampton-Boston, 2002. 

 [10] I. Stackgold, Green’s Functions and Boundary-Value Problems, John Wiley,          
New York, 1980. 

g 


